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ABSTRACT
We present a non-parametric regression method for denoising flu-
orescence video-microscopy volume sequences. The designed
method aims at using the 3D+t information in order to restore
acquired data contaminated by Poisson and Gaussian noise. We
propose to use a variance stabilization transform to deal with the
combination of Poisson and Gaussian noise. Consequently, we fur-
ther propose an adaptive patch-based framework able to preserve
space-time discontinuities and reduce significantly noise level using
the 3D+t space-time context. This approach lead to an algorithm
whose parameters are calibrated and then ready for intensive use.
The performance of the proposed method are then demonstrated on
both synthetic and real image sequences using quantitative as well
as qualitative criteria.

Index Terms— Video-microscopy, image sequence denoising,
patch-based approach, Poisson noise, adaptive estimation.

1. INTRODUCTION

Video-microscopy is an effective tool for the analysis of dynamical
phenomena occurring inside living cells. Combined with fluores-
cence, both confocal microscopy and wield-field microscopy allow
the localization of proteins of interest in 3D space and time. Unfor-
tunately, three factors limit the number of photons that can be used.
First, photo-bleaching prevent the use of high illumination intensi-
ties. Second, photo-toxicity perturbes the cell cycle up to cell death.
Third, observed fast kinetics require high acquisition rates.

By improving the signal to noise ratio, denoising allows to re-
duce the amount of light needed to record images and thus higher
frame rate will make possible to observe faster phenomena without
perturbing the activity of living cells. Moreover, besides of better
visualization of the acquired data, some analysis like spot detection
and tracking can be strongly helped by a denoising procedure.

Few methods use the temporal coherence for restoration of
video-microscopy image series. However, for video application, a
review of image sequence denoising methods can be found in [1].
Kuznetsov et al. proposed to use a temporal Kalman-Bucy filter
to improve the quality of video-microscopy image sequences [2].
Estimating the motion of small objects moving with high velocity
is a difficult task, alternatively methods extended from still im-
age denoising domain do not rely explicitly on motion estimation.
Thus, wavelet shrinkage [3, 4], Wiener filtering [5] or PDE-based
methods [6] has been applied to image sequence denoising.

Recently an extension of the non-local mean filter has been pro-
posed for image sequences [7]. An improvement proposed in [8]
consider a collection of similar patch as 3D arrays. An unitary trans-
form is then applied and a hard-threshold is used to attenuate noise.

In an other framework, also related to the non-local mean filter, con-
siders that images admit a sparse approximation over a dictionary of
atoms which can be a DCT basis or a set of image patches [9]. This
approximation can be formalized as the minimization of a functional
involving a data term and a penalty related to the size of the dictio-
nary.

Low intensities in video-microscopy lead to Poisson statistics.
On the other hand, electronic Gaussian white noise remains, despite
the use of cooling system for the sensors, resulting in a combina-
tion of Poisson noise and Gaussian noise. In the past, several ap-
proaches have been introduced to deal with signal dependent noises.
Maximum likelihood estimator can be derived for Poisson statistic
(e.g. [10]). However, the extension to the combination on Poisson
and Gaussian is not trivial. One can also apply a variance stabiliza-
tion transform [11]. A generalized Anscombe transform for Poisson
and Gaussian noise can be found in [12] and is appropriate when
then number of photon is large enough. Finally, on-line adaptation
to the local noise statistics is a third way to deal with signal depen-
dent noise (e.g. [13]).

In this paper, we present a space-time patch based adaptive sta-
tistical method for video-microscopy image sequence restoration.
We propose to take into account the statistical properties of the noise
using a realistic modeling. Furthermore, we consider 3D image
sequences as sequences of volumes and use the whole 3D+t infor-
mation to restore noisy data. Our approach involves a patch-based
functional leading to the definition of an estimator of the unknown
noise-free function and a statistical analysis of the performance of
this estimator allows us to adapt locally the neighborhood contain-
ing similar patches. Resulting algorithm has only few parameters
which are all calibrated.

The remainder of this paper is organized as follow: we first in-
troduce the problem of video-microscopy image sequence denoising
and describe the proposed method in Section 2. Finally, we demon-
strate in Section 3 the ability of our approach at restoring video-
microscopy image sequence using both synthetic and real data.

2. PROPOSED METHOD

In this section, we present a general framework for image sequence
analysis in fluorescence microscopy. Our study is limited to the
restoration of damages or artifacts due to random noise. Accord-
ingly, we do not consider the important issue of correcting the distor-
tions of the signal resulting from the optical system of microscopes
(e.g. deconvolution problem).
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2.1. Problem statement

Acquired images correspond to stacks of 10 to 60 slices with a res-
olution in the axial direction z of typically 1/3 when compared to
the resolution in the lateral direction x − y. In our study, the im-
ages show GFP-tagged proteins appearing as bright particles of size
5 to 10 pixels moving with speeds ranging from 1 to 10 pixels. The
small amount of light collected by sensors and thermal agitation in
electronic components leads to a mixed Poisson-Gaussian noise. In
what follows, we assume the following linear model

Zi = g0Ni + εi, (1)

where Zi is the observation at the space-time location xi ∈ R
4 (also

denoted by the index i) and g0 represents the gain of the overall elec-
tronic system. The number of collected photo-electrons is a random
variable assumed to follow a Poisson distribution with parameter θi:
Ni ∼ P(θi). Finally, the dark current is modeled by a Gaussian
white noise of variance Var[εi] = σ2

ε and expectation E[εi] = m.
In this paper, we consider the problem of estimating θi := θ(xi)

at each point xi from noisy data Zi taken in a space-time neighbor-
hood of xi.

2.2. Stabilization of noise variance

In this paper, we consider that the number of collected photo-
electron is large enough and use the generalized Anscombe trans-
form (GAT) [12]:

TGA(Zi) =
2

g0

√
g0Zi +

3

8
g2
0 + σ2

ε − g0m. (2)

The GAT requires the knowledge of the three parameters g0, σ2
ε and

m. These ones can be obtained by calibrating of the acquisition
system or can be estimated e.g. by dichotomy. We propose here an
approach based on a linear regression in the plane (E[Zi],Var[Zi]).
From (1), we have {

E[Zi] = g0θi + m,
Var[Zi] = g2

0θi + σ2
ε .

(3)

which yields

Var[Zi] = g0E[Zi] + σ2
ε − g0m. (4)

A linear regression in the plane (E[Zi],Var[Zi]) provides an estima-
tion of the two parameters: g0 and eDC = σ2

ε − g0m. Accordingly,
(2) can be stated as

TGA(Zi) =
2

g0

√
g0Zi +

3

8
g2
0 + eDC . (5)

Now, our idea is to robustly estimate the local mean and the local
variance. In order to get independent samples, it is crucial to parti-
tion the space-time domain into non-overlapping regions. The size
of these regions results from a compromise between the estimators
variances and the number of resulting measure points in the plane
(Ê[Zi], V̂ar[Zi]). In each region, the mean of the signal is estimated
using a robust M-estimator while the noise variance is robustly es-
timated using the “Least Median of Square” estimator defined as
V̂ar[Zi] = 1.4826 medi (| ri −medj |rj | |). where the pseudo-
residuals ri are computed at each spatial position (x, y) (in the 2D
case) as [14]:

rx =
1√

l2 + l
ΔZ(x) (6)

where ΔY (x) is a space-time Laplacian operator involving l sur-
rounding pixels. Given estimates of the mean and variance, a robust
linear regression is applied to derive the target parameters g0 and
eDC and apply the GAT to stabilize the variance of the noise.

2.3. Patch based space-time estimation

Once that the noise variance has been stabilized, we consider now
the following image sequence model:

Yi = u(xi) + ηi, (7)

where xi ∈ Ω denotes the pixel location in the space-time volume
Ω ⊂ R

4. The regression function ui = u(xi) is the ideal image to
be recovered from observations Yi := TGA(Zi). The errors ηi are
now assumed to be independent zero-mean Gaussian variables with
variance σ2

η theoretically equal to 1. Once u has been estimated, the
inverse generalized Anscombe transform is applied to recover θi at
each spatial position.

Let us define a patch as a sub-region of the space-time domain
of size p×p×p and consider that each patches ûi of the space-time
domain as a vector that can be expressed as a linear combination of
original noisy patch Yj lying inside a neighborhood Δ(xi) of the
point xi ∈ Ω. We define the estimator of the patch ui,n at iteration
n as the following weighted average:

ûi,n =
∑

xj∈Δ(xi)

wij,nYj (8)

were wij,n denotes the weights. We can then estimate the variance
of this estimation using:

v̂i,n =
∑

xj∈Δ(xi)

w2
ij,n (9)

since the variance of the noise has been stabilized to 1. In order to
select similar patch we use the following weights:

wij,n =
exp

(
−1

2
‖ûi,n−1 − ûj,n−1‖2

Σ̂i,n−1

)
∑

xk∈Δ(xi)

exp
(
−1

2
‖ûi,n−1 − ûk,n−1‖2

Σ̂i,n−1

) , (10)

where the distance between two regularized patch ûi,n−1 and
ûj,n−1 is computed as:

‖ûi − ûj‖2

Σ̂i

= (ûi − ûj)
T
Σ̂

−1
i (ûi − ûj) (11)

Besides, the symmetric scaling matrix Σ̂i is related to the variance
obtained at the previous iteration:

Σ̂i,n−1 =
λ

2
diag(v̂i,n−1 + v̂j,n−1). (12)

where the parameter λ is a α-quantile of the χ2
p3 distribution. Fi-

nally, the set of overlapping patches {ûk : ||xk−xi||1 < p} provide
several estimates at point xi which can be simply fused by taking the
average. This also allow to speed up the algorithm by sub-sampling
the image domain. Experiments show that using a subsampling fac-
tor of 1/(p + 1) give the same result than a non-vectorized version
of the algorithm. By using no sub-sampling, the quality of the de-
noising is improved.
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2.4. Neighborhood size selection

The estimator (8) is based on the approximation of the central patch
by a set of nearby patches. The performance of the estimator is then
related to the radius of this neighborhood and can vary at each point
of the image sequence according to image contents.

In order to optimally estimate the neighborhood size, we analyze
the performance of the estimator and consider the usual local L2 risk
defined as R(ûi, u(xi)) = E[(ûi − u(xi))

2]. where u(xi) is the
unknown function at point xi. The local riskR(ûi, u(xi)) is defined
at each point xi and then differs from usual performance measures
that integrate errors on the whole image. A local adaptation of the
neighborhood is more appropriate to improve the estimator in the
vicinity of discontinuities. In what follows, we aim at estimating the
neighborhoodΔ(xi) by minimizingR(ûi, u(xi)).

The risk R(ûi, u(xi)) can be decomposed into two terms:
squared bias b2

i and variance v2
i as

R(û(x), u(x)) = (E[û(x) − u(x)])2︸ ︷︷ ︸
b2(x)

+ E[(û(x) − E[û(x)])2]︸ ︷︷ ︸
v2(x)

.

(13)
The variance can be estimated using expression (9), but the bias term
bi depends on the unknown function u(xi) and is thus unobservable.
However, assuming minimal properties about the unknown function
u, we can propose an upper bound for the squared bias term and
derive the following property for the optimal estimator û∗

i :

(b∗i )
2

(v∗
i )2

=
d

2

�
= γ2, (14)

where d is the dimension of the space-time domain. Expression (14)
does not depend on image regularity and further is image-dependent
[15]. Following the Lepskii’s principle [16], we exploit this prop-
erty to minimize the L2 risk R(ûi, u(xi)). This idea is to design
a sequence of increasing radius (hi,n)n∈[0,N [ for the neighborhood
Δ(xi) : Hi = {hi,n, n ∈ [0, N [: hi,n−1 ≤ hi,n}. Assuming that
the variance v2

i,n is a decreasing function of n (this is especially true
when the number of point in the neighborhood increase quickly), the
number of samples taken into account is progressively increased to
reduce the estimator variance while controlling the estimator bias.
Formally, the so-called “bias-variance trade-off” corresponds to the
following inequality:

h∗
i = sup

hi,n∈Hi

{|bi,n| ≤ γvi,n}. (15)

This stepwise procedure will allow us to select among a predefined
list of neighborhoods {Δi,n, n ∈ [0, N [}, the neighborhood that
best minimizes the local quadratic risk. Since bi,h is unknown, we
consider instead a weaker “oracle” to detect the optimal window for
smoothing [17]:

h∗
i = sup

hi,n∈Hi

{n′ < n : |ûi,n − ûi,n′ | ≤ ρvi,n′}. (16)

where ρ = 2
√

2 is a positive constant. The design of a sequence of
increasing neighborhoods is now required for estimation. However,
in the case of image sequence, the relationship between the temporal
and spatial dimensions is related to the object size and movement,
which are both unknown. Accordingly, the space and time extents of
neighborhoods should be considered independently. For this reason,
we decide to increase alternatively the size of the neighborhood us-
ing two distinct radii. We note respectively hs and ht the spatial and
temporal neighborhoods which can vary from one point to another.

Sequences
L1 L2

te
mean std mean std

N 4.39 6 · 10−3 35.0 12 · 10−3

A 1.56 16 · 10−3 2.94 28 · 10−3 65 min
B 1.96 17 · 10−3 3.78 25 · 10−3 55 min
C 1.65 14 · 10−3 3.01 24 · 10−3 28 min

Table 1. Influence of the variance stabilization transform and of the
adjacent temporal frames on the error. L1 and L2 norms are used to
measure the performance of the denoising procedure. The mean and
standard deviation wrt time sequence are reported. The time comput-
ings te for each experiment is also given for the following sequences:
N: noisy sequence; A: 3D+t, Gaussian and Poisson noise; B: 3D+t,
Gaussian noise; C: 3D, Poisson and Gaussian noise.

It is worth noting that, unlike [17], the sequence of neighborhoods is
not known in advance since we consider two parameters hs and ht.
In our experiments, we use a dyadic scale in space and a linear scale
in time.

3. EXPERIMENTS

3.1. Simulated image sequence

In order to analyze performance of the proposed method, we con-
sider three experiments applied on a simulated sequence of 50 im-
ages of size 256 × 256 × 10. We have evaluated both the variance
stabilization procedure and the 3D+t denoising procedure through
three experiments reported in Table 1. For all these three experi-
ments the same parameters are used and 5× 5× 5 patches are used.
Results confirms that 3D+t denoising and appropriate noise mod-
elling are require to achieve high performances. We can also notice
that 3D+t processing implies an additional computationnal load.

3.2. Real video-microscopy data

In order to illustrate the performance of the proposed approche, we
have also conducted experiments on real image sequences obtained
using a spinning disk system. An example is reported on figure 1.
Qualitative comparisons with median filtering commonly used to
pre-process noisy video-microscopy image sequence show that the
proposed method better adapt to the geometry of images.

Finally, we have conducted a last experiment on fixed samples
comparing the improvement brought by the proposed 3D denoising
procedure when the exposure time is reduced from 500ms (taken as
a reference) to 30ms.

4. CONCLUSION

In this paper, we have presented a method for denoising 3D+t video-
microscopy image sequences able to take into account the space-time
content and noise characteristics. The proposed method relies on
the averaging of similar patches lying inside an adpated space-time
neighborhood. Optimal adaptation is performed by using the bias-
variance tradeoff for the designed estimator. Experiments on both
synthetic data and real image sequences shows that our approach
outperform standard methods and will allow to reduce illumination
and exposure time.
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Fig. 1. On the left: GFP-Nup 133-Cter + GFP-CENPA, stable HeLa cell line. 3D MIP reconstruction of a stack composed of 8 planes
(Dz=2μm). Stack extracted from a 3D+time serie acquired with a spinning disk microscope, 100x, 1.4NA (M. Zuccolo, V. Doye, UMR144-
CNRS, Institut Curie). On the upper-right corner is represented the result of the proposed method while the second row contains the result
obtained repectively using 3×3 and 5×5median filtering. Extracted zooms shows that the propose approch outperform tradionnal approches
used in fluorescence microscopy. On the right, the square root of the mean squared error is plotted against exposure time showing the
improvement of the filtering in the case of a fixed sample.
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